Wednesday, December 3, 2014

PERBANDINGAN ANTARA METODA

PERBANDINGAN ANTARA METODA

Telah dijelas kan dari awal bab pertama yang masing kelompok telah menjelas kan masing-masing fungsi yang ada dalam contoh.
Kami akan menjelas kan keunggulan dari kelemahan dari setiap metoda di tinjau dalam penggunaan secara umum.
Faktor-faktor lain yang dapat mempegaruhi dan menentukan dalam pemilihan sebuah metoda adalah factor subyektif seorang pemogram. Tingkat kemampuan ,pengetahuan ,kebiasaan penggunaan,kecakapan tentang fungsi,atau bahkan fanatisme terhadap metoda tertentu mungkin justru akan mampu mengungguli factor obyektif lain.
Berikut perbandingan antar metoda untuk menghitung akar-akar persamaan suku banyak.


METODA NEWTON

Proses perhitungan akar-akar persamaan dengan pendekatan metode newton dimulai dengan menetapkan harga pendekatan awal akar persamaan yang di inputkan sebagai X dan Epsilon.
Proses pengulangan adalah melakukan proses berulang untuk menghitung nilai penambahan dan pendekatan. Proses perulangan akan berhenti jika harga X telah mencapai harga mutlak artinya, akar persamaan telah ditemukan atau jika cacah perulangannya telah mencapai 20 kali.
Penggunaan pendekatan metoda newton untuk menghitung akar-akar persamaan suku banyak  umum nya mempunyai efisiensi yang sangat baik dalam proses perhitungannya.
Prosedur perhitungannya relatif sederhana mudah dipahami. Pendekatan metode newton sangat baik digunakan jika kita dan merasa kurang yakin tentang fungsi derivative dan tidak dapat menetapkan harga awal (fungsi X) yang baik.
Terlepas dari semua keunggulan tersebut penggunaan metoda ini akan relatif mudah terjadi error pada hasil perhitungannya. Selain itu kecakapan dalam membuat fungsi derivatif  bisa jadi akan menjadi hambatan yang dihadapi untuk menerapkannya.

Kelebihan
-          Konvergensi yang dihasilkan lebih cepat.

Kekurangan
-          Tidak selalu menemukan akar (divergen)
-          Kemungkinan sulit dalam mencari f’(xn).
-          Penetapan harga awal (xn) yang sulit.


Metoda Secant

Metode secant terkadang disebut juga sebagai computed line approach. Pendekatan dengan metoda ini akan memerlukan 2 harga awal yaitu X1 dan X2. Harga awal tersebut berfungsi untuk menentukan harga-harga pendekatan baru. Metoda secant memiliki kelemahan-kelemahan yang dapat diidentifikasikan diantaranya jika penetapan harga awal tidak baik maka pendekatan dengan metoda secant hanya akan memberikan sangat sedikit kemungkinan harga akar-akar persamaan pada interval yang ditentukan. Kemungkinan lain dapat terjadi yaitu pada saat tertentu extrapolasi dari 2 titik pendekatan awal untuk harga-harga akar persamaan yang sudah sangat dekat dengan harga sebenarnya yang dicari justru akan menghasilkan titik baru yang semakin menjauhi akar persamaan yang sebenarnya. Umum nya pendekatan metoda secant dapat diterapkan dengan efisiensi yang cukup baik. Metoda ini juga baik digunakan apabila kita mempunyai pengetahuan dan kecakapan tentang fungsi, tetapi tidak begitu paham tentang fungsi derivarif. Metode Secant menyerupai metode Newton-Raphson. Jika turunan fungsi f(x) sulit diperoleh / dihitung, maka metode Secant menjadi alternatif yang baik bagi metode Newton-Raphson.

Kelebihan         : merupakan fungsi berkelanjuhan (continue)
Kekurangan    : analisis turunan


Metoda Successive Bisection

Hal-hal yang perlu diperhatikan dalam metode biseksi Fungsi harus kontinu pada interval  xn dan xn+1. Menentukan  xn dan xn+1 dapat diperoleh dengan membuat grafik fungsinya. Nilai toleransi (error) dapat ditentukan oleh pengguna ataupun didasarkan pada bidang ilmu dari permasalahan yang diselesaikan. Pendekatan metoda biseksi umumnya lebih menjamin keberhasilan perhitungan akar-akar persamaan daripada 2 pendekatan sebelumnya yaitu metoda newton dan secant dengan catatan apabila persamaan secara fungsinya continue pada semua tempat. Penggunaan pendekatan metoda biseksi memerlumakan paling banyak iterasi perulangan.

Kelebihan Metode Biseksi
-          Selalu berhasil menemukan akar (solusi) yang dicari, atau dengan kata lain selalu konvergen.

Kekurangan Metode Biseksi
-          Metode biseksi hanya dapat dilakukan apabila ada akar persamaan pada interval yang diberikan.
-          Jika ada beberapa akar pada interval yang diberikan maka hanya satu akar saja yang dapat ditemukan.
-          Memiliki proses iterasi yang banyak sehingga memperlama proses penyelesaian. Tidak memandang bahwa sebenarnya akar atau solusi yang dicari dekat sekali dengan batas interval yang digunakan.


Metoda fixed point

Metode Titik Tetap’ (fixed-point), yaitu suatu metode pendekatan numeris yang terbentuk dari reorganisasi PANLT sedemikian rupa sehingga dihasilkan 2 buah fungsi, di sisi yang satu hanya mengandung variabel bebasnya saja sedangkan di sisi lainnya berbentuk g(x), suatu fungsi dalam bentuk yang lain. Metode ini memerlukan 1 (satu) buah harga x (disebut sebagai xawal) sebagai ‘tebakan’ untuk memulai proses iterasi. Karena sifatnya yang kurang praktis, bahkan tidak efisien dan juga lambat dalam mencapai konvergensi. Pada beberapa fungsi persamaan bisa terjadi kemungkinan bahwa harga pendekatan akar-akar persamaan hasil perhitungan pada iterasi-iterasi selanjutnya justru semakin menjauh dari harga penyelesaian yang dicari, dan pendekatan metoda fixed point iteration tidak dapat diterapkan untuk menyelesaikan apa yang dicari. Hal ini berarti bahwa pendekatan metoda fixed point iteration tidak dapat diterapkan untuk semua fungsi persamaan. Ciri khas fungsi persamaan yang akan mengalami kegagalan konvergensi dan tidak akan ditemukan penyelesaian apabila menggunakan pendekatan metoda fixed point.


Tugas Kelompok :
1. Hery Supriza                   D1042131010
2. Ferdinand Panggabean   D1042131026



No comments:

Post a Comment